Inequality with side lengths, altitudes and circumradius.

https://www.linkedin.com/feed/update/urn:li:activity:6556410707775238144
In an arbitrary triangle $A B C$, let a, b, c denote the lengths of the sides, R its circumradius, and let h_{a}, h_{b}, h_{c} respectively, denote the lengths of the corresponding altitudes. Prove the inequality, and give the conditions under which equality holds.

$$
\sum \frac{a^{2}+b c}{b+c} \geq \frac{3 a b c}{2 R} \sqrt[3]{\frac{1}{h_{a} h_{b} h_{c}}} .
$$

Solution by Arkady Alt, San Jose,California, USA.
Let F be area of $\triangle A B C$. Since $\frac{3 a b c}{2 R}\left(\frac{1}{h_{a} h_{b} h_{c}}\right)^{1 / 3}=\frac{3 \cdot 4 R F}{2 R}\left(\frac{a b c}{a h_{a} \cdot b h_{b} \cdot c h_{c}}\right)^{1 / 3}=$ $6 F\left(\frac{a b c}{8 F^{3}}\right)^{1 / 3}=3(a b c)^{1 / 3}$ and by AM-GM Inequality $3(a b c)^{1 / 3} \leq a+b+c$ remains to prove inequality $\sum \frac{a^{2}+b c}{b+c} \geq a+b+c \Leftrightarrow \sum\left(\frac{a^{2}+b c}{b+c}-a\right) \geq 0 \Leftrightarrow$ $\sum \frac{(a-b)(a-c)}{b+c} \geq 0 \Leftrightarrow \sum\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right) \geq 0$.
We have $\sum\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)=\sum\left(a^{4}-a^{2} b^{2}-a^{2} c^{2}+b^{2} c^{2}\right)=\sum a^{4}-\sum b^{2} c^{2}=$ $\frac{1}{2} \sum\left(a^{4}+b^{4}-2 a^{2} b^{2}\right)=\frac{1}{2} \sum\left(a^{2}-b^{2}\right)^{2} \geq 0$.
Since both inequalities which was used becomes equality iff $a=b=c$ then inequality of the problem becomes equality iff $\triangle A B C$ is equilateral. •

